

LACHLAN ACCESS PROGRAM

Condobolin | Lake Cargelligo | Tullibigeal | Ungarie

NAME 8	<u> </u>	OF TASK:	Practical	Investigati	ion – Red	ox Reaction

COURSE: Preliminary Chemistry 2021	TASK NUMBER: 2
DATE ISSUED: Term 2 Week 7,	DATE DUE: Term 2 Week 10,
Wednesday the 3 rd June 2021	Monday 21 st June 2021
TOTAL MARKS: 30	WEIGHTING: 30%
COORDINATING TEACHER: Mrs Hughes	CO-TEACHERS: Mr Kavale

Submission process to be followed:

- The task must be saved in pdf format.
- The task is to be submitted via email to westernlap@det.nsw.edu.au by 9am of the due date.
- Email heading and filename should be in the format: Your Last name, First initial, Subject and task number. For example: NyeBBiologyTask4
- Tasks are not to be emailed to the coordinating teacher or the classroom teacher.
- Make sure you ask for a read receipt and a delivery receipt for your email- these are found in the options section of your new message.
- If an extension is required, paperwork is to be submitted to your in-school access coordinator at least 7 days prior to the task due date. If you are aware that you may be away on the due date, submit it prior to the due date.

Syllabus Content:

Inquiry question: How is the reactivity of various metals predicted?

Students:

- apply the definitions of oxidation and reduction in terms of electron transfer and oxidation numbers to a range of reduction and oxidation (redox) reactions
- conduct investigations to measure and compare the reduction potential of galvanic half-cells
- construct relevant half-equations and balanced overall equations to represent a range of redox reactions
- predict the reaction of metals in solutions using the table of standard reduction potentials
- predict the spontaneity of redox reactions using the value of cell potentials

Outcomes to be assessed:

- CH11-1: develops and evaluates questions and hypotheses for scientific investigation
- CH11-2: designs and evaluates investigations in order to obtain primary and secondary data and information
- CH11-3: conducts investigations to collect valid and reliable primary and secondary data and information
- CH11-5: analyses and evaluates primary and secondary data and information

Task Description:

- Students will complete a practical investigation to create a galvanic cell and use this to measure the electrode potential and consequently rank their reduction strength.
- Students will then undertake an analyse of their data and compare calculated values to known values.

Task is shown on the next page.

Investigation: Measurement of electrode potentials and ranking the reduction strengths of their reduced forms

Background:

In this investigation, the copper electrode will be used as a reference electrode to measure the electrode potential of each of several other electrodes. This will allow us to list the electrode half-reactions in order of decreasing tendency to occur, because the higher the electrode potential, the greater the tendency for that half reaction to occur or the greater the oxidising strength of the oxidised form of the half reaction. Then we will be able to rank the reduced forms of the half reactions in order of increasing reduction strength.

Table 12.2 shows the standard electrode potentials at 25°C. In this table the half reactions are all reduction half equations written as:

Oxidised form + $ne^{-} \rightarrow$ reduced form

In a reduction half reaction the species on the left-hand side is the oxidant: it takes electrons from a species in another half reaction.

When comparing two reduction half reactions, the one with the larger E^e goes as written and the other one goes in reverse. As a consequence of this statement:

- The greater the value of E^o, the greater the oxidizing strength of the oxidized form (left-hand side) of the half reaction
- The smaller the value of E^o, the greater the reducing strength of the reduced form (right-hand side) of the reduction half reaction.

Aim:

To measure and compare the reduction potentials of several electrodes using the Cu, Cu2+ electrode as a reference electrode and to determine the relative strengths of the reductants involved.

Hypothesis:		
Propose a suitable hypothesis.		
	 	

Materials:

- o 50ml of 1.0mol L-1 solutions of:
 - CuSO₄
 - MgSO₄
 - Acidified FeSO₄
 - ZnSO₄
 - KNO₃
 - KI
- o Strips of Cu, Mg and ZN metals
- 1 ungalvanised nail
- 1 graphite electrode
- o 0.2g iodine solid
- o 5x150ml beakers
- Waste bottles x 2
- o 7cm x 7cm piece of sandpaper
- Voltmeter
- Electrical wires
- o Filter paper
- o Petri dish
- o Labels
- o Blu tack
- o Forceps
- Stirring rod
- o Power pack

Method:

- 1. Pour 50ml of CuSO₄, MgSO₄, Acidified FeSO₄ and ZnSO₄ into separate labelled beakers.
- 2. Clean the metals with sandpaper.
- 3. Stand the pieces of metal in separate beakers with their corresponding solutions so that they are partly submerged. It may be useful to use Blu Tack to hold the metals in place
- 4. Pour 50ml of iodide solution into another beaker, add 0.2g solid iodine to the solution, stir until dissolved then stand the graphite electrode in it.
- 5. Soak a piece of filter paper in the petri dish with KNO3.
- 6. Place the piece of filter paper so that one end is in the copper solution and the other end is in the solution of the electrode being tested.
- 7. Connect the metal strip (graphite electrode in the iodide, iodine half-cell) and copper strip to the voltmeter with electrical wires.
- 8. Record the voltage of the electrode being tested relative to the copper electrode, including its sign.
- 9. Connect each of the half cells (electrodes) in turn to the copper electrode, using a fresh piece of soaked filter paper for each cell, and measure the voltage.
- 10. Make up three cells that do not include a copper electrode and measure their voltages.

Results:

Record the voltage for each galvanic cell in a suitable table.

Analysis of Results:

1. Calculate the electrode potential of each of the electrodes you measured from:

$$E = E_{test} - E_{Cu} = E_{test} - 0.34$$

where E is the measured voltage of the electrode relative to the copper electrode and E_{test} is its electode potential. Enter the values in your table. (Working space included below)

2. Write the	reduction ha	alf reactions as	sociated with e	ach of the electr	odes listed.

List the reducta	reductants ir nts.	n these half r	reactions i	n order of	decreasin	g strengt	h as
		n these half r	reactions i	n order of	decreasin	g strengt	h as
		n these half r	reactions i	n order of	decreasin	g strengt	h as
		n these half r	reactions i	n order of	decreasin	g strengt	h as
		n these half r	reactions i	n order of	decreasin	g strengt	h as
		n these half r	reactions i	n order of	decreasin	g strengt	h as
		n these half r	reactions i	n order of	decreasin	g strengt	h as
		n these half r	reactions i	n order of	decreasin	g strengt	h as

5.	Use the method you used to calculate electrode potentials from analysis step 1 to calculate the voltages you would expect for the cells you made in method step 10.

discrep			

	t thui illeimn	<i>-</i>	
COHCIUSIOH			
Conclusion	COLICIOSIOII.		
		•	• •

Compa	are your elect						
Compa	are the volta	ges measur	ed in metl	hod step 10	and those	calculated	in analy
	are the voltag					calculated	in analy
						calculated	in analy
						calculated	in analy
						calculated	in analy
						calculated	in analy
						calculated	in analy
						calculated	in analy
						calculated	in analy
						calculated	in analy
						calculated	in analy
						calculated	in analy

3.	Suggest reasons for any discrepancies between your results and the data in Table 12.2.

TABLE 12.2	Standard electrode	potentials at 25°C
-------------------	--------------------	--------------------

OXIDISEO FORM = no	-	REDUCED FORM	E ⁺⁺ (V)
F ₂ +2e ⁻	\rightarrow	2F	+2.87
H ₂ O ₂ + 2H ⁺ + 2e ⁻	\rightarrow	2H ₂ O	+1.78
Au ⁺ + e ⁻	-9	Au	+1.69
MnO ₄ + 8H ⁺ + 5e ⁻	\rightarrow	Mn ²⁺ + 4H ₂ O	+1.51
PbO ₂ + 4H ⁺ + 2e ⁻	\rightarrow	Pb ²⁺ + 2H ₂ O	+1.46
Cl ₂ + 2e ⁻	\rightarrow	2Cl	+1.36
O ₃ + H ₂ O + 2e ⁻	>	O ₂ + 20H"	+1.24
Cr ₂ O _y ²⁻ + 14H ⁺ + 6e ⁻	+	2Cr ³⁺ + 7H ₂ O	+1.23
O ₂ + 4H ⁺ + 4e ⁻	\rightarrow	2H ₂ O	+1.23
MnO ₂ + 4H ⁺ + 2e ⁻	->	Mn ²⁺ + 2H ₂ O	+1.22
Pt ²⁺ + 2e	\rightarrow	Pt	1.18
Ag ₂ O + 2H ⁺ + 2e ⁻	\rightarrow	2Ag + H ₂ O	+1,17
Br ₂ + 2e ⁻	-	2Br	+1.09
NO ₃ + 4H* + 3e	\rightarrow	NO + 2H ₂ O	+0.96
NO ₃ "+3H"+2e"	\rightarrow	HNO ₂ + H ₂ O	+0.93
2Hg ²⁺ + 2e ⁻	\rightarrow	Hg ₂ ²⁺	+0.92
Hg ² " + 2e"	\rightarrow	Hg	+0.85
NO ₃ + 2H ⁺ + e ⁻	\rightarrow	$NO_2 + H_2O$	+0.80
Ag ⁺ +e ⁻	\rightarrow	Ag	+0.80
Fe ³⁺ + e ⁻	\rightarrow	Fe ²⁺	+0.77
O ₂ + 2H ⁺ + 2e ⁻	\rightarrow	H ₂ O ₂	+0.70
MnO ₄ + 2H ₂ O + 3e	\rightarrow	MnO ₂ + 40H ⁻	+0.60
l ₂ + 2e ⁻	\rightarrow	21	+0.54
O ₂ + 2H ₂ O + 4e	\rightarrow	40H ⁻	+0.40
Ag ₂ O+H ₂ O+2e ⁻	\rightarrow	2Ag + 2OH	+0.34
Cu ²⁺ + 2e ⁻	\rightarrow	Cu	+0.34
50 ₄ + 4H ⁺ + 2e ⁻	\rightarrow	H ₂ SO ₃ + H ₂ O	+0.17
Sn ⁴⁺ + 2e	\rightarrow	Sn ² *	+0.15
5 + 2H ⁺ + 2e ⁻	\rightarrow	H ₂ S	+0.14
S ₄ O ₀ ²⁻ + 2e ⁻	\rightarrow	25 ₂ O ₃ 2-	+0,08
2H+ 2e-	\rightarrow	H ₂	0.00
Pb ²⁺ + 2e ⁻	\rightarrow	РЬ	-0.13
Sn ²⁺ + 2e ⁻	\rightarrow	Sn	-0.14
Ni ²⁺ + 2e ⁻	-	Ni	-0.26
Co ²⁺ + 2e ⁻	\rightarrow	Co	-0.28
PbSO ₄ + 2e ⁻	\rightarrow	Pb + SO ₄ 2-	-0.36
Cd ²⁺ + 2e ⁻	\rightarrow	Cd	-0.40
Fe ²⁺ + 2e ⁻	\rightarrow	Fe	-0.45
2CO ₂ + 2H ⁺ + 2e ⁻	\rightarrow	H ₂ C ₂ O ₄	-0.49
Zn ²⁺ + 2e	\rightarrow	Zn	-0.76
2H ₂ O + 2e ⁻	\rightarrow	H ₂ + 20H ⁻	-0.83
Al ³⁺ + 3e ⁻	\rightarrow	Al	-1.66
Mg ²⁺ + 2e	\rightarrow	Mg	-2.37
Na ⁺ + e ⁻	\rightarrow	Na	-2.71
Ca ²⁺ + 2e ⁻	\rightarrow	Ca	-2.87
Ba ²⁺ + 2e ⁻	+	Ba	-2.91

Oxidising strength of the oxidised form increases

Marking Criteria:

Outcomes	Outstanding	High	Sound	Developing	Limited
CH11-1: develops and evaluates questions and hypotheses for scientific investigation			Provides hypothesis for experiment that predicts ranking of metals by potential (3 marks)	Provides hypothesis that ranks most of the metals by potential (2 marks)	Hypothesis provided but metals not ranked (1 mark)
CH11-2: designs and evaluates investigations in order to obtain primary and secondary data and information			Can compare results with known data to suggest valid reasons for result discrepancies and suggests appropriate adjustments to experimental procedure (5-6 marks)	Compares some results with known data to suggest some reasons for result discrepancies and suggest some adjustments to experimental procedure (3-4 marks)	States known data and results and/or suggests reasons for result discrepancy and/or suggest some experimental adjustments (1-2 marks)
CH11-3: conducts investigations to collect valid and reliable primary and secondary data and information	Safely and efficiently conducts practical. Follows instructions independently (5 marks)	Safely completes practical. Clarifications needed on some instructions (4 marks)	Safety reminders needed. Clarifications on a range of instructions (3 marks) Accurate data collected and recorded appropriately (4 marks)	Safety reminders needed. Clarifications on a range of instructions (2 marks) Data collected (with errors) or data not adequately organised (2-3 marks)	Student completes task under direct supervision (1 mark) Student requires support to read and collect data (1 mark)
CH11-5: analyses and evaluates primary and secondary data and information	Completes accurate analysis of results with correct calculations, half-equations and ranking (12 marks)	Completes analysis of results with mostly correct calculations, half-equations and ranking (9-11 marks)	Completes accurate analysis of results with correct calculations, halfequations and ranking (6-8 marks)	Completes accurate analysis of results with correct calculations, half-equations and ranking (3-5 marks)	Completes accurate analysis of results with correct calculations, half-equations and ranking (1-2 marks)

WORD	MEANING			
Account	Account for: state reasons for, report on. Give an account of: narrate a series of events or transaction			
Analyse	Identify components and the relationship between them; draw out and relate implications			
Apply	Use, utilise, employ in a particular situation			
Appreciate	Make a judgement about the value of			
Assess	Make a judgement of value, quality, outcomes, results or size			
Calculate	Ascertain/determine from given facts, figures or information			
Clarify	Make clear or plain			
Classify	Arrange or include in classes/categories			
Compare	Show how things are similar or different			
Construct	Make; build; put together items or arguments			
Contrast	Show how things are different or opposite			
Critically	Add a degree or level of accuracy depth, knowledge and understanding, logic, questioning,			
(analyse/evaluate)	reflection and quality to (analyse/evaluate)			
Deduce	Draw conclusions			
Define	State meaning and identify essential qualities			
Demonstrate	Show by example			
Describe	Provide characteristics and features			
Design	Do or plan (something) with a specific purpose or intention in mind			
Discuss	Identify issues and provide points for and/or against			
Distinguish	Recognise or note/indicate as being distinct or different from; to note differences between			
Evaluate	Make a judgement based on criteria; determine the value of			
Examine	Inquire into			
Explain	Relate cause and effect; make the relationships between things evident; provide why and/or how			
Extract	Choose relevant and/or appropriate details			
Extrapolate	Infer from what is known			
Give an example	Do exactly that and no more, but make sure it is specific to the rest of the question			
How	In what way or manner; by what means			
Identify	Recognise and name			
Interpret	Draw meaning from			
Investigate	Plan, inquire into and draw conclusions about			
List	Make a set of items considered as being in the same category or having a particular order of priority			
Justify	Support an argument or conclusion			
Outline	Sketch in general terms; indicate the main features of			
Predict	Suggest what may happen based on available information			
Propose	Put forward (for example a point of view, idea, argument, suggestion) for consideration or action			
Recall	Present remembered ideas, facts or experiences			
Recommend	Provide reasons in favour			
Recount	Retell a series of events			
Summarise	Express, concisely, the relevant details			
Synthesise	Putting together various elements to make a whole			
To what extent	How much, to what degree or how many			
Translate	Move from one place or condition to another			
What	Asking for information specifying something (mark allocation will determine the extent of information required)			
Why	For what reason or purpose			