| Subject: Year 12 Mathematics Standard 2 | Task Number: 2 |
| :---: | :---: |
| Type of Task: In Class Task | Coordinating Teacher: Mrs Judith Davis <br> Cooperating Teacher: Miss Simone Parkinson, Mrs Lisa Bendall, Mr Kali Ratu Roraduri |
| Date Issued: Term 1 Week 7 <br> Tuesday $12^{\text {th }}$ March 2024 | Date Due: Term 1 Week 9 Thursday $28^{\text {th }}$ March 2024 |
| Total Marks: 45 Marks | Weighting: 25\% |
| Submission Instructions: Students are to complete their test in period 2 on Thursday $28^{\text {th }}$ March. The test MUST be submitted upon completion and is not to be removed from the classroom. |  |

## Task Context:

In the topic 'Non Right Angle Trigonometry', you have learnt to solve problems in right angled and non right angled triangles in a variety of contexts.

In this task you will complete a in class task on:
Non Right Angled Trigonometry (Cambridge Chapter 4)

## Syllabus Outcomes:

MS2-12-3 interprets the results of measurements and calculations and makes judgements about their reasonableness, including the degree of accuracy and the conversion of units where appropriate MS2-12-4 analyses two-dimensional and three-dimensional models to solve practical problems MS2-12-10 uses mathematical argument and reasoning to evaluate conclusions, communicating a position clearly to others and justifying a response

## Task Description:

Each student will be provided a set of practice questions attached to this notification.
From these questions, an in-class test will be set which contains:

- 10 marks are allocated from the practice questions
- 25 marks are allocated from questions similar to the practice questions
- 10 marks are allocated from questions unfamiliar to the practice questions provided
- A copy of the Mathematics Standard Reference Sheet will be provided with the test.


## Criteria for Assessing Learning

Students will be assessed on their ability to:

- find trigonometric ratios and calculations
- calculate the length of an unknown side or an unknown angle in a right angled triangle using Pythagoras or trigonometric ratios
- calculate the area of a non right angled triangle
- calculate unknown sides and angles in non right angled triangles using the Sine rule or Cosine rule
- construct and use compass and true bearings
- solve problems involving Pythagoras' theorem, the trigonometry of right angled and non right angled triangles, angles of elevation and depression and the use of true bearings and compass bearings
- construct and interpret compass radial surveys and solve related problems
- justify solutions with your reasoning


## LACHLAN ACCESS

ASSESSMENT TASK NOTIFICATION

## HSC Key Verbs

Find: identify the solution
Calculate: give a numerical solution
Construct: draw a diagram
Solve: to find a solution
Justify: support an argument with solutions
NESA "All My Own Work"
By signing for this assessment task and having completed the NESA course "All My Own Work" I confirm that this assessment task will be free from plagiarism and reflective of my own work. I understand that if I am found to have plagiarised or engaged in malpractice, I will be referred to the HT Access to engage the LAP Malpractice process.

## Marking Guidelines:

Marks have been allocated on the class test. Marks will not be awarded for bald answers where relevant working is required.

## ASSESSMENT TASK NOTIFICATION

## Practice Questions

1. Which compass bearing is the same as a true bearing of $110^{\circ}$ ?
A. $S 20^{\circ} E$
B. $S 20^{\circ} \mathrm{W}$
C. $S 70^{\circ} E$
D. $S 70^{\circ} \mathrm{W}$
2. The angle of elevation of the top of a tree from a point $P$ on the ground is $30^{\circ}$. The point $P$ is 28 metres from the base of the tree.


The correct expression for $h$, the height of the tree, is
A. $\quad h=28 \tan 30^{\circ}$
B. $\quad h=\frac{28}{\tan 30^{\circ}}$
C. $h=30 \tan 28^{\circ}$
D. $\quad h=\frac{\tan 30^{\circ}}{28}$

## ASSESSMENT TASK NOTIFICATION


3. Calculate the angle to the nearest degree when $\sin \theta=0.2753$.
A. $15^{\circ}$
B. $16^{\circ}$
C. $28^{\circ}$
D. $48^{\circ}$
4. Which answer represents a valid expression of Pythagoras theorem for this triangle.

A. $\quad y^{2}=65^{2}-33^{2}$
B. $y^{2}=65^{2}+33^{2}$
C. $y^{2}=\sqrt{65^{2}-33^{2}}$
D. $y^{2}=\sqrt{65^{2}+33^{2}}$
5. In the diagram what is the value of $\sin \Theta$

A. $\frac{5}{12}$
B. $\frac{12}{5}$
C. $\frac{12}{13}$
D. $\frac{5}{13}$
6. The angle at $Z$ is found to have a cosine value of ( -0.1 ) What is the most likely size of the angle at $\angle X Z Y$ ?

A. $6^{\circ}$
B. $60^{\circ}$
C. $84^{\circ}$
D. $96^{\circ}$
7. In this diagram $A$ and $B$ represent the location of two ships at sea.

The lines labelled N indicate the bearing $0^{\circ} \mathrm{T}$ or True North.
Which answer is a possible bearing of $A$ from $B$ ?

8. Which of the following equations is the correct application of the Sine Rule to find the size of angle $G$ ?

A. $\frac{\sin G}{20}=\frac{\sin 68^{\circ}}{30}$
B. $\frac{\sin G}{68}=\frac{\sin 30^{\circ}}{20}$
C. $\frac{\sin G}{30}=\frac{\sin 20^{\circ}}{68}$
D. $\frac{\sin G}{30}=\frac{\sin 68^{\circ}}{20}$
9. The diagram shows a radial survey of a field $A B C D$.


In triangle $C O B$, what is the size of $\angle C O B$ ?
A. $36^{\circ}$
B. $73^{\circ}$
C. $136^{\circ}$
D. $382^{\circ}$
10. In a game of Goal-ball the goal is 3 metres wide. Scott has the ball in a position 5 metres from the closest post and 7 metres from the other post.
What is the size of the angle $\theta$ (to the nearest degree)?

A. $13^{\circ}$
B. $22^{\circ}$
C. $38^{\circ}$
D. $64^{\circ}$
11. Find the value of $\frac{24 \sin 35}{\sin 72}$ correct to two decimal places.
12. Find the value of $5 \cos 19^{\circ} 37^{\prime}$ correct to two decimal places.
13. Evaluate $\theta$ if $\tan \theta=48$ correct to the nearest minute.
14. Calculate $x$ correct to 1 decimal place when $x=40 \times \cos 75^{\circ}$.
15. $x=\frac{31}{\sin 68^{\circ}} \times \sin 25^{\circ} \quad$ Find $x$ to the nearest whole number.
16. Evaluate $\theta$ to the nearest degree when $\sin \theta=0.53$.
17. Calculate the value of $x$ when $x^{2}=7.5^{2}+5.9^{2} 2 \times 7.5 \times 5.9 \times \cos 42^{\circ} 18^{\prime}$ correct to 1 decimal place.
18. $p^{2}=13^{2}+11^{2}-2 \times 13 \times 11 \times \cos 53^{\circ}$. Find $p$ to the nearest whole number.
19. If $\tan \theta=85$, what is the value of $\theta$, correct to 2 decimal places.
20. Find the value of $x$, correct to the nearest cm .

21. Find the size of angle $B A C$, to the nearest degree.


## ASSESSMENT TASK NOTIFICATION

22. Calculate the length of OM .

23. Find the length of $X Y$, correct to 1 decimal place.

24. The angle of depression from the top of a 25 m tall viewing tower to a crocodile on the ground is $62^{\circ}$. Find the direct distance from the top of the tower to the crocodile, to the nearest metre.

25. What is the compass bearing of $A$ from the centre point?

26. The compass bearing of Y from X is $S 49^{\circ} W$.

What is the true bearing of $X$ from $Y$ ?

27. Calculate $x$ correct to 2 decimal places.

28. Calculate the distance from P to Q to the nearest kilometre.

29. Calculate the area of the triangle to 1 decimal place.


NOT TO
SCALE
30. Point $B$ is 80 km North of Point $A$.

Point $C$ is 31 km from Point $A$ and 59 km from Point $B$.
What is the true bearing of $C$ from $B$ to the nearest degree?

31. Use the cosine rule to evaluate the size of the angle marked $\theta$ to the nearest degree.

32. The largest angle in the triangle below is obtuse $(\theta)$. What is the value of the obtuse angle to the nearest degree?


Not to scale
33. What is the value of $\theta$, to the nearest degree.

34. Calculate the length, $p$, to the nearest metre.


## ASSESSMENT TASK NOTIFICATION


35. Calculate the value of the angle, $x$, to the nearest degree.

36. Calculate $x$ correct to 2 decimal places.

37. The angle of depression from $J$ to $M$ is $75^{\circ}$. The length of $J K$ is 20 m and the length of $M K$ is 18 m .


Calculate the angle of elevation from $M$ to $K$. Give your answer to the nearest degree.
38. During a hike in the mountains, Miriam recorded the angle of elevation from various points to the top of a mountain, $M$. From a point $B$, the angle was $7^{\circ}$.
From another point $C$ on the same level as $B$, the
angle was $10^{\circ}$. The point $C$ was 1.7 km closer to the base of the mountain than was $B$.
The following diagram represents this information.
In the diagram, $A M$ represents the height of the mountain, and $A C B$ is a straight line.

(a) Show that the size of $\angle B M C=3^{\circ}$
(b) Calculate the length of $C M$ to two decimal places.
(c) Find the height of the mountain (to the nearest metre).
39. ABCD represents an area of land.

a) Calculate $\angle A O B$.
b) What is the length of $A B$ correct to one decimal place?
c) Calculate the area of $\triangle A O B$, to 2 decimal places.
40. A compass radial survey of the field $A B C D$ has been conducted from $O$.

(a) Calculate the size of $\angle A O B$.
(b) Calculate the area of $\triangle D O C$ to the nearest square metre.
(c) Calculate the length of $D C$ to one decimal place.

